Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiu-Mei Li,^a* Yan-Ling Niu,^a Qing-Wei Wang^b and Bo Liu^b

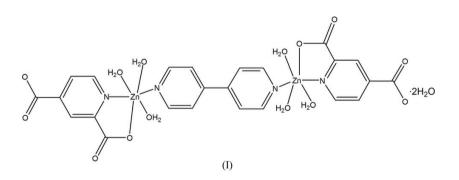
^aDepartment of Chemistry, Tonghua Teachers College, Tonghua 134002, People's Republic of China, and ^bDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: lixm20032006@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean σ (C–C) = 0.005 Å R factor = 0.036 wR factor = 0.061 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 21 October 2006


Accepted 11 January 2007

μ -4,4'-Bipyridine- $\kappa^2 N$:N'-bis[triaqua(pyridine-2,4-dicarboxylato- $\kappa^2 N$,O²)zinc(II)] dihydrate

In the centrosymmetric title compound, $[Zn_2(C_7H_3NO_4)_2-(C_{10}H_8N_2)(H_2O)_6]\cdot 2H_2O$, each Zn^{II} atom is six-coordinated in an octahedral geometry by one N atom of 4,4'-bipyridine (bpy), one N atom and one O atom of pyridine-2,4dicarboxylate (pydc) and three water molecules. The crystal structure features $O-H\cdots O$ hydrogen bonds between carboxylate groups and water molecules, and $\pi-\pi$ stacking interactions between the bpy and pydc molecules.

Comment

Metal-organic complexes show a variety of supramolecular architectures (Eddaoudi et al., 2001). These metal-organic network structures depend on judicious selections of metal centers and organic ligands that may provide desirable coordination covalent bonds, hydrogen-bonding linkages or π - π interactions for the construction of new supramolecular complexes. The 4,4'-bipyridine (bpy) ligand is a common linker in the construction of metal-organic frameworks, and a wide range of coordination polymers have been generated with it. Pyridinedicarboxylic acids, which can serve as bifunctional ligands, have been utilized to build coordination networks (Zhang & Chen, 2003; Wang et al., 2004; Gu et al., 2004). In this work, we employed pyridine-2,4-dicarboxylate (pydc) and bpy ligands, generating a new dinuclear compound, $[Zn_2(pydc)_2(bpy)(H_2O)_6]\cdot 2H_2O$, (I), under hydrothermal conditions.

In (I), each $\mathbb{Z}n^{II}$ atom is six-coordinated in an octahedral geometry by one N atom from the bpy ligand, one N atom and one O atom from the pydc ligand, and three water molecules (Fig. 1). The compound is binuclear, bridged by a bpy ligand across a center of inversion. $\pi-\pi$ Interactions between the bpy and pydc molecules, with a shortest atom-to-atom distance of 3.621 (4) Å between C3 and C10(1 + *x*, *y*, *z*), lead to the formation of a one-dimensional chain structure. The supramolecular bands are linked into a three-dimensional network by O-H···O hydrogen bonds (Fig. 2 and Table 1).

© 2007 International Union of Crystallography All rights reserved

Experimental

Compound (I) was prepared from a mixture of $Zn(NO_3)_2$ ·6H₂O (0.149 g, 0.5 mmol), H₂pydc (0.083 g, 0.5 mmol), bpy (0.078 g, 0.5 mmol) and H₂O (18 ml) in a 30 ml Teflon-lined autoclave under autogenous pressure at 433 K for 5 d. After cooling to room temperature, colorless needle-shaped crystals suitable for X-ray structure analysis were obtained. Analysis calculated for C₂₄H₃₀N₄O₁₆Zn₂: C 37.9, H 4.0, N 7.4%; found: C 37.7, H 3.8, N 7.3%.

V = 1505.9 (5) Å³

 $D_x = 1.679 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 1.68 \text{ mm}^{-1}$ T = 292 (2) KNeedle, colorless 0.43 × 0.07 × 0.06 mm

8056 measured reflections 2985 independent reflections

 $\begin{aligned} R_{\rm int} &= 0.069\\ \theta_{\rm max} &= 26.1^\circ \end{aligned}$

1979 reflections with $I > 2\sigma(I)$

Z = 2

Crystal data

[Zn ₂ (C ₇ H ₃ NO ₄) ₂ (C ₁₀ H ₈ N ₂)
$(H_2O)_6]\cdot 2H_2O$
$M_r = 761.26$
Monoclinic, $P2_1/c$
a = 10.023 (2) Å
b = 13.941 (3) Å
c = 11.239 (2) Å
$\beta = 106.478 \ (3)^{\circ}$

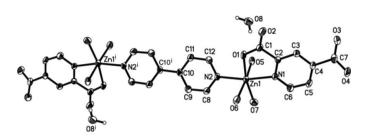
Data collection

Bruker SMART APEX CCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.860, T_{\max} = 0.899$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.036$	$w = 1/[\sigma^2(F_o^2)]$
$wR(F^2) = 0.061$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.83	$(\Delta/\sigma)_{\rm max} = 0.001$
2985 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
216 parameters	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$

Table 1


Hydrogen-bond geometry (Å, $^{\circ}$).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O5-H12\cdots O2^i$	0.80	1.81	2.599 (3)	169
$O5-H13\cdots O4^{ii}$	0.83	1.94	2.744 (3)	165
O6-H11···O1 ⁱⁱⁱ	0.78	2.06	2.827 (3)	168
$O6-H10\cdots O3^{iv}$	0.99	1.73	2.719 (3)	175
$O7-H8\cdots O8^{i}$	0.92	1.94	2.808 (3)	157
$O7-H9\cdots O8^{v}$	1.00	1.74	2.735 (3)	171
O8-H1WO5	0.73	2.17	2.889 (4)	173
$O8-H2W\cdots O4^{vi}$	0.94	1.75	2.689 (4)	174

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) x - 1, y, z; (iii) -x + 1, -y + 2, -z; (iv) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) $x - 1, -y + \frac{3}{2}, z - \frac{1}{2}$.


All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C–H = 0.93 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. H atoms of water molecules were located in a difference Fourier map and refined as riding in their as-found relative positions, with individual isotropic displacement parameters.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL*.

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted except for those of the uncoordinated water molecules. [Symmetry code: (i) -x, 2 - y, -z.]

Figure 2

A view of crystal packing along the a axis. Dashed lines indicate hydrogen bonds. H atoms have been omitted for clarity.

The authors thank Heng-Qing Jia at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, for collecting the data.

References

- Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.
- Gu, X. J., Shi, Z. Y., Peng, J., Chen, Y. H., Wang, E. B. & Hu, N. H. (2004). J. Mol. Struct. 694, 219–222.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, X. L., Qin, C., Wang, E. B., Hu, C. W. & Xu, L. (2004). J. Mol. Struct. 698, 75–80.
- Zhang, X. M. & Chen, X. M. (2003). Eur. J. Inorg. Chem. pp. 413-417.